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Encryption for data protection
Using encryption schemes we are able to protect

• Data-in-transit
• Data-at-rest

Warning
In order to process data (data-in-use) we have to decrypt it, exposing the cleartext
information!
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A solution: Homomorphic Encryption

Homomorphic Encryption (HE) allows a third party to perform some computations directly
on encrypted data.

HE was first theorized in 1978 by Rivest, Adleman and Dertouzos [RAD78].

Definition
Let M be the set of plaintexts, C the set of ciphertexts and

∗ : M × M → M and • : C × C → C,

two operations.
An encryption scheme E : M → C is called homomorphic with respect to ∗ and • if it holds:

E (m1) • E (m2) = E (m1 ∗ m2) ∀m1, m2 ∈ M.
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Different families of HE

We can divide HE cryptosystems in three families:

• Partially Homomorphic Encryption (PHE) schemes (e.g. RSA [RSA78], ElGamal
[Elg85])

• Somewhat Homomorphic Encryption (SHE) schemes (e.g. BGN [BGN05])

• Fully Homomorphic Encryption (FHE) schemes (e.g. BGV [BGV12], TFHE [Chi+19],
CKKS [Che+17])

FHE has been called the "Holy Grail of cryptography" because of its groundbreaking
potential

3 / 15



RSA - Partially Homomorphic Encryption
Introduced in 1978 by Rivest, Shamir, Adleman [RSA78].

• KeyGen:
PK = (e, n = p · q) SK = d

where p, q are primes and ed ≡ 1 mod ϕ(n).
• Enc: Given a message 0 ≤ m < n, compute ciphertext c as

c ≡ me mod n

Homomorphic property
E (m1) · E (m2) = (me

1 mod n) · (me
2 mod n) =

= (m1 · m2)e mod n =
= E (m1 · m2)
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BGN - Somewhat Homomorphic Encryption
Proposed in 2005 by Boneh, Goh, Nissim [BGN05].

• KeyGen: Choose primes p1, p2 and output (n, G , G1, e, g , h) where
• n = p1p2
• G , G1 cyclic groups of order n
• g generator of G
• e : G × G → G1 bilinear map s.t. e(g , g) generator of G1
• h = up2 , with u ̸= g another generator of G

PK = (n, G , G1, e, g , h) SK = p1

• Enc: Given a message 0 ≤ m < p2, compute ciphertext c as

c = gmhr ∈ G

with r ∈ {0, . . . , n − 1} random.
• Dec: Given ciphertext c recover m by computing

c ′ = cp1 and g ′ = gp1

and solving
m = logg ′(c ′)
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BGN - Somewhat Homomorphic Encryption
• Enc: Given a message 0 ≤ m < p2, compute ciphertext c as

c = gmhr ∈ G

with r ∈ {0, . . . , n − 1} random.

Homomorphic properties
Addition: take r ∈ Zn random

E (m1)E (m2)hr =
∈ G︷ ︸︸ ︷

(gm1hr1)
∈ G︷ ︸︸ ︷

(gm2hr2) hr = gm1+m2hr ′
=

∈ G︷ ︸︸ ︷
E (m1 + m2)

Multiplication: compute g1 = e(g , g) and h1 = e(g , h), pick r ∈ Zn random

e(E (m1), E (m2))hr
1 = e(gm1hr1 , gm2hr2)︸ ︷︷ ︸

∈ G1

hr
1 = gm1m2

1 hr ′

1 = E (m1 · m2)︸ ︷︷ ︸
∈ G1
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LWE and error growth in FHE
The majority of FHE schemes base their security on hard problems on lattices also used in
Post-Quantum Cryptography (PQC).

Many Fully Homomorphic Encryption schemes are based on the Learning With Error (LWE)
problem and its variants.

Two possible approaches to deal with error growth:
• Leveled FHE schemes
• Bootstrapping
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Bootstrapping

Technique introduced by Craig Gentry [Gen09] and used in many schemes nowadays.

Consists in homomorphically evaluating the decryption function to reduce the error.
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FHE timeline
The first Fully Homomorphic Encryption scheme was described in 2009 by Craig Gentry in his
PhD thesis [Gen09].

Image taken from [Chi21]
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Performance and future perspectives

• Big computational overhead, but improved a lot since 2009
• Gap between FHE and cleartext operations is narrowing thanks to

• Academic research (Hybrid Homomorphic Encryption)
• Funded projects (DARPA DPRIVE)
• Industry involvement (Zama, IBM, Google)
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Use cases

• Cloud computing
• Machine Learning training and inference
• Medical research
• Stock market predictions
• Electronic voting
• Supply Chain
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Tools for Homomorphic Encryption

• Zama TFHE-rs, Concrete Python, Concrete ML
• OpenFHE
• Microsoft SEAL
• IBM HElib
• Google FHE C++ Transpiler
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